Exercise 36

Prove that $\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}$.

Solution

According to Definition 2, proving this limit is logically equivalent to proving that

$$
\text { if } \quad 0<|x-2|<\delta \quad \text { then } \quad\left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon
$$

for all positive ε. Start by working backwards, looking for a number δ that's greater than $|x-2|$.

$$
\begin{aligned}
& \left|\frac{1}{x}-\frac{1}{2}\right|<\varepsilon \\
& \left|\frac{2-x}{2 x}\right|<\varepsilon \\
& \left|\frac{1}{2 x}(2-x)\right|<\varepsilon \\
& \left|\frac{1}{2 x}\right||x-2|<\varepsilon \\
& \frac{1}{|2 x|}|x-2|<\varepsilon
\end{aligned}
$$

On an interval centered at $x=2$, a positive constant C can be chosen so that $1 /|2 x|<C$.

$$
\begin{aligned}
& C|x-2|<\varepsilon \\
& |x-2|<\frac{\varepsilon}{C}
\end{aligned}
$$

To determine C, suppose that x is within a distance a from 2 .

$$
\begin{gathered}
|x-2|<a \\
-a<x-2<a \\
2-a<x<2+a \\
4-2 a<2 x<4+2 a \\
\frac{1}{|4-2 a|}>\frac{1}{|2 x|}
\end{gathered}
$$

The constant C is then $1 /|4-2 a|$, which means $\varepsilon / C=|4-2 a| \varepsilon$.

Choose δ to be whichever is smaller between a and $|4-2 a| \varepsilon: \delta=\min \{a,|4-2 a| \varepsilon\}$. Now, assuming that $|x-2|<\delta$,

$$
\begin{aligned}
&\left|\frac{1}{x}-\frac{1}{2}\right|=\left|\frac{2-x}{2 x}\right| \\
&=\left|\frac{1}{2 x}(2-x)\right| \\
&=\left|\frac{1}{2 x}\right||x-2| \\
&=\frac{1}{|2 x|}|x-2| \\
&<C \delta \\
&=\left(\frac{1}{|4-2 a|}\right)(|4-2 a| \varepsilon) \\
&=\varepsilon .
\end{aligned}
$$

Therefore, by the precise definition of a limit,

$$
\lim _{x \rightarrow 2} \frac{1}{x}=\frac{1}{2}
$$

